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1. INTRODUCTION

Statistical Energy Analysis (SEA), developed by Lyon [1] and others, is widely used in
evaluating the response of complex structures subjected to high-frequency excitations. In
SEA, the entire system is considered to be an assembly of a number of structural elements,
called subsystems. Power balance of these subsystems forms the basis for the SEA
calculations. Modal density, dissipation loss factor and coupling loss factor of the
subsystems/subsystem connectivity form the important SEA parameters. Accuracy of the
prediction of response using SEA greatly depends on, other than the limitations of SEA, the
accuracy with which these SEA parameters are estimated. For reliable prediction of
structural fatigue life, Lyon [1] suggests that the response has to be estimated within an
accuracy of 1 dB which needs that the SEA parameters also be estimated within such an
accuracy.

The dissipation loss factor is a measure of the power dissipated within a subsystem. Bakel
and Vries [2] discussed the sensitivity of the SEA results to the dissipation loss factor.
Response of a subsystem is greatly influenced by the dissipation loss factor. In most of the
situations the dissipation loss factor can be obtained only by conducting experiments on
either the given structure or identical/similar structures.

Many of the spacecraft structural components are made of honeycomb sandwich panels.
Some of the examples of honeycomb sandwich construction include the equipment panels,
payload platforms, solar panels and antenna reflectors. In particular, solar panels, antenna
reflectors, etc., have face sheets made of composite material for optimum performance.
These elements have large area and low mass and hence their dynamic response levels can
be significant when they are subjected to acoustic excitation. Hence, for such elements the
estimation of the response to acoustic excitation is very important. To use SEA for the
above purpose, it is essential to determine the dissipation loss factors of composite
honeycomb sandwich panels.

Cummins and Farrow [3] and Eaton [4] presented a compilation of the dissipation loss
factors of some of the spacecraft structural elements. For honeycomb sandwich panels, they
suggest a value of 0-020 for the dissipation loss factor. Ranky and Clarkson [5] obtained
a similar value of dissipation loss factor for honeycomb sandwich panels. All the above
experiments were conducted in air and hence the reported loss factors were the total loss
factors, that is the sum of the dissipation loss factor and the radiation loss factor. Clarkson
and Brown [6] have shown that the use of the total loss factor as the dissipation loss factor
can lead to large errors in the estimated response. The radiation loss factor can be
significant, especially for the honeycomb sandwich panels. Clarkson and Brown [6]
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reported a value of 0-002 as the dissipation loss factor of honeycomb sandwich panels
after removing the radiation loss factor component. One can observe that this value
of the dissipation loss factor is very small compared to those reported by Cummins and
Farrow [3].

One important type of construction of interest is the honeycomb sandwich panel with
composite face sheets. The references [ 3, 4] suggest the use of 0-020 as the loss factor of such
panels and a value of 0-030 for solar panels. But these are obtained from tests using
propagating wave tube and hence not suitable for using in SEA-based calculations though
they can be used for acoustic absorption studies. There is no information available on the
dissipation loss factor of such panels obtained using energy method or transient decay
method, which are generally used for this purpose. Hence, there is a need to determine the
dissipation loss factors of such panels. The present paper is a contribution in this regard.

To determine the loss factor using the energy method, excitation force has to be
measured. The excitation force is usually measured using impedance head. But the mass of
the impedance head and the attachment elements like the stud and cube can influence the
measured force. Hence, to obtain the actual force, correction factors need to be applied on
the measured force. These correction factors are derived in this paper. The results show that
if these corrections are not applied, the measured loss factors of honeycomb sandwich
panels are in large error.

Hence, the present paper presents the dissipation loss factors of honeycomb sandwich
panels with composite face sheets. Expression for the correction to be applied on the
measured force in order to determine the actual force is developed in this study. Use of this
expression shows the importance of the correction to be applied when using impedance
head for measuring force.

2. EXPERIMENTAL TECHNIQUE

The dissipation loss factor is a measure of the energy dissipated within a subsystem. By
definition, the dissipation loss factor is the ratio of the power dissipated within the
subsystem per unit frequency in rad/s, to the mean energy of the subsystem. The dissipation
loss factor of subsystem denoted by #, is then given by

Na = ma/(wE), (1)

where 7, is the mean power dissipated within the subsystem and E is the mean energy of the
subsystem at a frequency wrad/s. In other words, the power dissipated within a subsystem
is equal to wn,E. In SEA, twice the mean kinetic energy is taken as the mean energy of the
subsystem [ 7]. The mean energy of the subsystem having a mass of m and spatial average of
the mean square value of the velocity {v?>, can then be shown to be [1]

E = m{v?),. (2

The dissipation loss factor can be obtained experimentally either using steady state
techniques or using transient techniques. The steady state techniques include the half-power
bandwidth method and the energy method.

In the case of the half-power bandwidth method, the loss factor is calculated from the
measured frequency response function using the relation

na = Alfu, )
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where 4 is the half-power bandwidth and f, is the natural frequency. The half-power
bandwidth technique is suitable only when the modes are well separated, in other words if
the modal overlap is less than unity. This technique gives only the modal loss factor and this
can be determined using either sine sweep or random excitation.

While using the energy method, the response levels at several locations are measured for
a known input power. From the equality of the input power and the dissipated power, the
dissipation loss factor is obtained. In other words for an input power of r;,, the dissipation
loss factor is given by

Na = T f(0m{v?).). )

If the structure is excited by a shaker, by measuring the input power and the spatial average
of the mean square value of the velocity response of the structure, the dissipation loss factor
of the structure can be determined using equation (4). The loss factor can be obtained by
using either sine sweep excitation or random excitation. The energy method can give the
loss factor at each frequency and hence at low frequencies the method can be used to get the
modal loss factor.

The energy method can be used even in the frequency range where the modal overlap is
large. At higher frequencies the mean input power can be determined using the relation

[1,8]
Tiw = f5 1 (f)/(4m), )

where f;? is the mean square value of the excitation force and n( f) is the modal density of the
structure at a frequency f. Substituting the expression for the power input in equation (4),
the expression for the loss factor becomes

na = fy n(f)/{8nfim? {0*). . (6)

Clarkson and Pope [9] demonstrated this technique for plates and cylinders. This method
assumes that the modal responses are independent and there is no inter-modal coupling [10].

In the case of transient technique the loss factor is determined from the decay of the
response level when the excitation is suddenly stopped. This technique is also known as
envelope decay method. The loss factor is then obtained from the reverberation time or the
decay rate. Reverberation time, denoted by Ty, is the time required for the response level to
be dropped by 60 dB and the decay rate, denoted by DR, is the drop in the response level
expressed in terms of dB in unit time. The dissipation loss factor is related to these
parameters by

Too = 2:2/( fna), (7)
DR =273 fn,. (8)

Usually, decay rate is specified for structural systems and reverberation time is specified for
acoustic fields. One can obtain the modal loss factor by exciting the required mode using
sine excitation. The average value of the modal loss factors gives the frequency averaged loss
factor. This procedure is particularly suitable for the lower order modes. On the other hand,
random excitation in the frequency band of interest can be applied and the
frequency-averaged loss factors can be obtained from the decay of the mean square values of
the response levels. The decay data can become corrupted by the modes of vibration which
are excited due to the transients generated by the cutting-off of the excitation. The
dissipation loss factor obtained using the decay method is dominated by the lower values of
the loss factors.
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While using the contact-type excitation, the damping due to the contact could be
significant and corrupt the measured loss factor especially in the case of a structure with
very low value of damping. As Bies and Hamid [11] suggested, use of shakers with
non-contacting electromagnet is advisable in such situations. But this can introduce eddy
current damping. Contact-type excitation is used in the present study.

In SEA-based calculations, we require frequency-averaged loss factors. In the frequency
range, where there is large modal overlap the frequency-averaged loss factor is only
meaningful. In the energy method this can be achieved using the frequency averaging or
using random excitation with suitable bandwidths. While using the half-power bandwidth
method, the frequency-averaged loss factor can be obtained from the modal loss factor by
taking the energy average. Ranky and Clarkson [5] pointed out that in SEA based
calculations, energy average is the most appropriate averaging. This can be directly
obtained when the energy method is used. Ranky and Clarkson [5] demonstrated that there
was no significant difference between the results obtained using the energy method and the
decay method if the modes in the bands had similar values of loss factors. If the modes in the
bands do not have similar values of loss factors, the energy method gives the required result
for use in SEA. Hence, the energy method is preferred. In the present experiments energy
method is used to determine the loss factor.

There are some precautions to be taken while using the energy method in evaluating the
loss factor. As Brown and Norton [12] suggested, since the driving point impedance is very
small near the resonance and hence its measurement could be in error, driving point
impedance should not be used in evaluating the input power. Since the measured velocity at
the driving point include additional near field component, the velocity of the driving point
should not be included in estimating the spatial averaged velocity as pointed out by Ranky
and Clarkson [5]. Many of the experiments to obtain the dissipation loss factors are often
conducted in air. In such situations, the input power is balanced by the dissipated power as
well as the sound power radiated. Hence, the measured loss factor is the sum of the
dissipation loss factor and the radiation loss factor. Clarkson and Brown [6] have shown
that the use of the total loss factor as the dissipation loss factor can lead to large errors in the
estimated response. To obtain the dissipation loss factor, one has to necessarily subtract the
radiation loss factor from the total measured loss factor. The radiation loss factor can be
theoretically estimated for simple structural forms. The radiation loss factor is significant
near and above the critical frequency of the structure. For a thin plate the critical frequency
is very high and hence the radiation loss factor is generally lower. But the critical
frequencies of honeycomb sandwich panels are lower and hence the radiation loss factors
can be significant. Hence, while obtaining the dissipation loss factors of honeycomb
sandwich panels, care should be taken in removing the radiation loss factor component. All
these precautions are taken in the present experiment.

3. DETAILS OF THE PANEL

The dissipation loss factor of a typical composite honeycomb sandwich panel is obtained
experimentally using the technique discussed above. The structural details of the panel
considered are given here. The panel considered is a solar panel of a typical spacecraft.

Dimensions 2:15x 1-80 m

Area 3-87 m?
Core material Aluminium
Thickness of the core 18 mm

Core 3/8 — 5056 — 0-0007
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Foil thickness of the core 0-018 mm

Cell size 9-54 mm

Density of the core 16 kg/m?

Shear modulus of the core 632 x 107, 10-53 x 107 N/m?

Face sheet material Two layers of (0/90) CFRP (Carbon Fibre Reinforced
Plastics)

Thickness of the face sheet  0-2 mm

Mass of the panel 13-81 kg

At a few locations, local reinforcements are provided.
Each CFRP layer has the following properties:

Young’s modulus along fibre direction 30 x 101° N/m?>

Young’s modulus along transverse direction  0-607 x 10*° N/m?

The Major Poisson ratio 0-346

Shear modulus 0-50 x 10*° N/m?
Calculated values of flexural and shear rigidity are:

D;; 5135Nm

D,, 5028 Nm

D, 6974 Nm

Des 1656 Nm

N 15x10°N/m
For calculating the modal density, the mass of the panel is taken as 10-92 kg. This is
obtained by neglecting the lumped masses, as suggested by Clarkson and Ranky [13], such
as hinge inserts, hold-down inserts and doublers provided at a few locations.

4. EXPERIMENTAL RESULTS

The dissipation loss factor of the composite honeycomb sandwich panel whose details are
given in section 3 is determined experimentally. The energy method discussed in section 2,
that is equation (6), is employed in determining the loss factor. The panel is excited at
a particular location using the shaker system and the excitation force is measured. From the
measured acceleration response levels, the mean square value of the velocity response levels
are calculated. As discussed earlier, the velocity at the driving point is not considered in
determining the spatial average of the velocity. The experiment is repeated by exciting at
a few other points and measuring the corresponding acceleration levels. The measured
value of the force and the spatial average of the mean square value of the velocity response
for different driving point locations are used in determining the loss factor. The information
on the modal density, which is required to obtain the loss factor using equation (6), is
theoretically estimated [14]. The tests are conducted in air.

4.1. TEST SET-UP

The panel is mounted on a fixture at six locations called hold-down points. The fixture in
turn is mounted on a seismic mass. Figure 1 shows the test set-up. The panel is excited at
four locations shown in Figure 2. An aluminium block is bonded on the panel and the panel
is excited using electro-dynamic shaker connected to the block through a stringer. When the
panel is excited at one location, the acceleration responses are measured at the other three
locations which are used for determining the spatial-averaged velocity. The vibration
response at the driving point is not used in determining the spatial-averaged velocity as
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Figure 1. A view of the test set-up.
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Figure 2. Driving point locations on the panel.

pointed out by Ranky and Clarkson [5]. Hence, in the present experiment the
spatial-averaged velocity is determined from the acceleration levels measured at three
locations and the experiment is repeated for four driving point positions. The mass of each
accelerometer is about 2 g and it is found that no correction for the mass of the
accelerometers need be applied on the measured acceleration levels. The excitation force is
measured using impedance head.
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4.2. TOTAL LOSS FACTOR

Using equation (6) the loss factor of the panel is determined from the measured excitation
force and the acceleration levels. Stationary broadband random excitation is used as the
excitation force. To avoid frequency averaging, as suggested by Brown [15], a low value of
resolution, 162:76 Hz, is adapted.

The parameter modal density, required while using equation (6) for determining the loss
factor, is obtained theoretically. The modal density of the honeycomb sandwich panel with
composite face sheet, incorporating the transverse shear deformation is given by [14]

2abpf (2 (fo 1[5 4,  4p®N2f V[, 2N
a2 At ] 208 o

where

f1(0) = 1 —y1sin*(20), £2(0) = (D11/D2,)""* cos*0 + (D5,/Dy1)"*sin*0 and

291 =1—(Dy, + 2Dg6)//D11D25. (10

The parameters D, D,,, D1, and D¢ are the flexural rigidities of the panel and N is the
shear rigidity. The pane is having dimensions a, b and p is its mass per unit area. The shear
rigidity of a honeycomb sandwich panel is given by

N = G.te{1 + (t,/t}%, (11)

where ¢, is the thickness of the fact sheet, ¢, is the thickness of the core and G, is the shear
modulus of the core. Since the modal density of a composite honeycomb sandwich panel
estimated using equation (9) is in agreement with the experimental results [14, 16], use of
theoretical results does not lead to any significant error in the derived loss factor values.

The loss factor thus obtained is shown in Figure 3. Since the experiment is conducted in
air, the measured loss factor is the sum of the dissipation loss factor and the radiation loss
factor [6], called total loss factor.
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Figure 3. Total loss factor of the composite panel.
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4.3. CRITICAL FREQUENCY

Critical frequency of a structure is the frequency at which the speed of the bending waves
in the structure becomes equal to the speed of sound waves in air. For a thin plate, it is
shown that

wi = c*p/D, (12)

where w, is the critical frequency. Renji et al. [17] derived an expression for the critical
frequency of a honeycomb sandwich panel with orthotropic face sheets as

ol = (c*p/D)/[(3 + 0)/4] — [*p/N1}, (13)

where Dy = D,, = D and oo = (D, + 2Dg¢)/D. The above expression considers transverse
shear flexibility of the core and the orthotropic properties of the face sheets. Using equation
(13) the critical frequency of the panel is estimated as 608 Hz. The speed of sound in air is
assumed to be 346 m/s. The information on the critical frequency is necessary to determine
the radiation loss factor.

4.4. RADIATION LOSS FACTOR

Since the experiment is conducted in air, one has to obtain the radiation loss factor of the
structure to determine its dissipation loss factor. The radiation loss factor is theoretically
determined using the following equations. The radiation loss factor denoted by #,,4 is given
by

Nyaa = Rrad/(pr)s (14)

where R,,, is the radiation resistance of the structure and 4 is the area of the panel. The
radiation resistance of the panel is estimated using the following equations [18, 19].
For f < f. and ka, kb > 2=,

Riua = Apac {2l A2 f1 1081 + (PA/A)g2}/2,
where

g1 = @/mH{(1 = 292)/Lp(1 —y?)'2]} for fif. < O,
g1=0 for fif. = 05,
g2 = (1/4n?) {(1 —y2)In[(1 + )/(1 — )] + 2y} {1/ —?)*2},
Y= (Sl
For f < f. and ka, kb < 2m,
Ryaa = Apac(@/n*)(ple/A) (fIfe)'12/2.
For f=/.,
Ryaa = Apac{(a/i)'? + (b)2)!12}/2.
For > f.,

Ryaa = Apac{l — (f/f)} 12 (15)
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Figure 4. Estimated radiation loss factor of the composite panel.
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Figure 5. Dissipation loss factor of the composite panel.

In equation (15), p is the perimeter and f, is the critical frequency of the panel. The
wavelength of sound in air is denoted by /4, and the wavelength at the critical frequency is 4..
The density of air is denoted by p,. The parameter k is the wavenumber in air.

The estimated radiation loss factor of the panel is shown in Figure 4. This is estimated
using equation (15) for simply supported edge conditions. It is to be noted that the radiation
loss factor of the panel is estimated assuming that the panel boundaries are having simple
supports. However, in the present experiment the edges of the panel are free and at six
points the panel is fixed. But the boundary conditions affect the radiation resistance only at
low frequencies and at low frequencies the radiation resistance values are very small. Hence,
use of the radiation resistance values estimated for simply supported boundaries does not
cause any significant error in the dissipation loss factor values determined here.

4.5. DISSIPATION LOSS FACTOR

By subtracting the radiation loss factor from the total loss factor values, the dissipation
loss factor of the panel is determined. The dissipation loss factor values are shown in
Figure 5.
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4.6. DISCUSSION OF RESULTS

It can be seen that the dissipation loss factor values are very small in the frequency range
1300-1600 Hz. It is to be noted that the measured driving forces are assumed to be the
actual driving forces and no correction factors are applied. But the driving forces are
measured using impedance head and due to the impedance of the impedance head and the
attachment elements the measured force can be different from the actually applied force.
This is investigated further.

5. EFFECT OF IMPEDANCE HEAD

5.1. THEORY

The excitation force is measured using impedance head. The impedance of the impedance
head and the attachment elements influence the measured force. This means that the
measured force will be different from the actually applied force.

Following the analysis by Brown and Norton [12], the actual force, denoted by f,, is
given by

Jo=Ful {1+ (Y/Ya0)} (16)

where f,, is the measured force, Y is the driving point admittance and Y, is the admittance
due to the impedance head the attachment elements. The parameter Y,, could be
determined by exciting the impedance head and the attaching stud. If M is the mass of the
impedance head and the attachment elements, its admittance is given by

Yo = 1/(joM). (17)

The above equation is valid for a wide frequency range upto the frequency of resonance of
the impedance head and the attachment elements.

The driving point admittance, in general, can have both real and imaginary parts and
hence the expression for the actual force becomes

Ja=tul{1 + [Re(Y)JIm(Y)]/Yy)}, (18)

where Re(Y) is the real part of the admittance and Im(Y) is the imaginary part of the
admittance. Substituting equation (17) in equation (18) we get

fo=fw/{l — oMIm(Y) 4+ joMRe(Y)}. (19)
The above equation can be rewritten as
fu=full — oMIm(Y) — joMRe(Y)}/{[1 — oMIm(Y)]> + [oMRe(Y)]?}.  (20)
The magnitude of the actual force can then be obtained as

|fol = 1 ful {1 — oMIm(Y)]* + [@MRe(Y)]*}'2/{[1 — oMIm(Y)]* + [@MRe(Y)]*}.
(21)

The mean square value of the actual force is then given by

f2 =12/ {T1 — oMIm(V)]? + [oMRe(Y)1%}. @2)
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This means that to determine the actual force from the measured force, it is necessary to
measure the driving point admittance, both the real and the imaginary parts.

Driving point admittance is the ratio of the Fourier transform of the velocity of the
driving point to the Fourier transform of the driving force. The admittance can be
determined using the relation

Y =¢p/bs, (23)

where ¢ is the auto-spectral density of the force and ¢, is the cross-spectral density
between the force and the velocity. Clarkson and Pope [9] had reported that the measured
driving point admittance values were influenced by the admittance of the impedance head
and the attachment elements. To take into account this effect, Brown and Norton [12]
suggested the use of a correction factor as given below:

Yo = Yu/{1 = (Yu/Yar)}, (24)

where Y, is the actual admittance and Y,, is the measured admittance. Hence, the equation
for the actual force becomes

J& =fa/{ll — oMIm(Y,)]* + [oMRe(Y,)]*}. (25)

It remains now to find out the imaginary and real parts of the actual driving point
admittance. Using equation (17) for the admittance of the impedance head and the
attachment elements, the actual admittance can be determined from the measured
admittance using equation (24) as

Y, = Y, /{1 — joMY,}. (26)

The measured admittance can have real and imaginary parts, that is Y, =
Re(Y,) + jIm(Y,,), and hence expression for the actual admittance in terms of the measured
admittance becomes

Y,={Re(Y,)+jlm(Y,)} {1+ oMIm(Y,)+joMRe(Y,)}/{[1+oMIm(Y,)]* + [0MRe(Y,,)]*}.

(27)

Hence, the real and the imaginary parts of the actual admittance are given by
Re(Y,) = Re(Y,)/{[1 + oM Im(Y,)]* + [@MRe(Y,,)]*}. (28)
Im(Y,) = [wM {Re*(Y,,) + Im*(Y,,)} + Im(Y,)][Re(Y,)/Re(Y,,)]- (29)

The actual force can be determined from the measured force using equations (28) and (29) in
equation (25).

5.2. TEST RESULTS

Using equation (6), the loss factor of the panel is determined from the measured driving
force and the acceleration levels. The tests conducted are the same as those discussed
previously, but the driving point admittance values are also obtained.

The driving point admittance is obtained by measuring the force and acceleration at the
driving point. From the above signals the cross-spectral densities of velocity and force are
calculated. The driving point admittance is then obtained using equation (23). It was
discussed earlier that the measured admittance could be in error due to the admittance of



756 LETTERS TO THE EDITOR

IS
(o]
(e}

200

Impedance (N s/m)

rTT T T T T T T T T T T T T T T TTTT

0 Tyt ve v bt s brr

500 1000 1500 2000
Frequency (Hz)

<

Figure 6. Impedance of the impedance head and the attachment elements.

010
.
.
. L
2
~ L +
+ +
+

004 | *

llllllllllllllIlIII|II\IIllll|II!I!

200 700 1200 1700

Frequency (Hz)

Figure 7. Total loss factor of the composite panel with force corrections.

the impedance head and the attachment elements and the actual admittance is given by
equations (28) and (29). To apply the corrections, the impedance of the impedance head and
the attachment elements should be evaluated. The measured impedance of the impedance
head and the attachment elements used in the present experiment is shown in Figure 6. At
2000 Hz, the impedance is about 237 N's/m and it can be seen from the results that the
admittance follow the relation given by equation (17). For calculating the actual admittance
using equations (28) and (29), the value of Y,, averaged over 162-76 Hz bandwidth is used.
Thus, from the measured values of driving force, driving point acceleration and the
impedance of the impedance head, the real and the imaginary parts of the actual driving
point admittance values are obtained by using equations (23), (28) and (29).

From the measured values of the driving forces and known values of the real and
imaginary parts of the actual driving point admittance, the actually applied forces are
calculated using equation (25). The total loss factor is then determined using equation (6)
and the results are shown in Figure 7. The radiation loss factor of the panel is as shown in
Figure 4. By subtracting the radiation loss factor from the total loss factor, the dissipation
loss factor of the panel is determined and the results are shown in Figure 8.
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Figure 8. Dissipation loss factor of the panel with force corrections.

It can be observed from Figures 7 and 4 that the measured dissipation loss factor near the
critical frequency is very low. This is because the radiation loss factor is very large near the
critical frequency and the dissipation loss factor is relatively low. Hence the total loss factor
is approximately same as the radiation loss factor and the difference between them is not
expected to be accurate. Hence, at this frequency the average of the dissipation loss factors
of the nearby frequency bands is used.

5.3. DISCUSSION OF RESULTS

It can be seen from the results given in Figure 8 that the dissipation loss factor is almost
constant in the entire frequency band. The energy average of the dissipation loss factors in
the entire frequency band is equal to 0-027. These values are approximately same as those
for the panels with aluminium face sheets. If an accurate estimate of the dissipation loss
factor is required one can use different values in the lower and higher frequencies. In such
a case following values can be used as dissipation loss factors of honeycomb sandwich
panels with composite face sheets:

up to 1414 Hz 0-022,
(upper limit of 1000 Hz octave band)

above 1414 Hz 0-034.

As discussed earlier, the actual forces are different from the measured forces. The effect is
more significant at high frequencies than at low frequencies. To have a feel of the difference
between the actual force and the measured force, the results at driving point 5 are given in
Figure 9. One can observe the differences in the measured and the actual forces and their
significance.

It is interesting to see the results of the dissipation loss factors if the corrections are not
applied on the measured forces, that is Figure 5. The dissipation loss factor is very low for
a small frequency range near 1300 Hz, if the correction factors are not applied. The results
show that to determine accurate values of input force and hence the dissipation loss factor,
correction on the measured force is necessary. To arrive at the correction, both the real and
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Figure 9. Actual and measured forces at location 2: +, actual force; O, measured force.

the imaginary parts of the driving point admittance have to be measured and equation (25)
to be used.

A detailed investigation reveals that the above behaviour occurs at frequencies near the
frequency of the fundamental mode of the vibration of the core cell. The fundamental mode
of core cell vibration is estimated to be 1520 Hz. This is the frequency of the first mode of
bending vibration of the cell wall for simply supported boundaries.

The radiation loss factor is very large at frequencies near the critical frequency. Near the
critical frequency of a panel the total loss factor increases to a large value. Based on the
above characteristics the critical frequency of a panel can be found out experimentally from
the measured total loss factor. The critical frequency of the panel used in the present
experiment is found to be 651 Hz. The experimental results validate the expression for the
critical frequency given by equation (13) derived earlier [17]. Although the experimental
results were provided in reference [17], the loss factor was determined from one driving
point position. The present experiment is conducted with four driving point positions.
Hence, the present results are expected to be more reliable. The results also show that the
critical frequency can be determined even with one driving point without loss of accuracy.
However, the single driving point used in the experiment is not at the boundary or
a symmetric point. Also, there are a large number of modes in the frequency band near the
critical frequency [ 14]. If the driving point is at the boundary, the results will not be reliable.
The total loss factor determined by exciting at corner of the panel is shown in Figure 10. It
can be seen that the critical frequency cannot be determined from that data.

6. CONCLUSIONS

Dissipation loss factor of a typical honeycomb sandwich panel with composite sheets is
obtained experimentally using the energy method. The dissipation loss factors of the
composite panel are approximately the same as those of the panels with aluminium face
sheets. The measured driving force is influenced by the impedance of the impedance head
and the attachment elements. In order to determine the actual driving force, a correction
factor has to be applied on the measured driving force to take into account the impedance of
the impedance head and the attachment elements. An expression for this correction factor is
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Figure 10. Total loss factor of the panel with driving point at the corner.

developed. It is seen that failure to incorporate the above-mentioned corrections can give
largely different dissipation loss factor values compared to the actual values. The

€X

perimental results validate the expression derived earlier for the critical frequency of

honeycomb sandwich panels considering the transverse shear deformation effects and the
orthotropic properties of the face sheets.
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APPENDIX A: NOMENCLATURE

Symbols not listed here are used only at specific places and are explained wherever they
occur.

S

dimensions of a panel

area of the plate

speed of sound in air
22 D125

—_
—

[SkS

flexural rigidity values of a laminate
decay rate

twice the mean kinetic energy
frequency, in Hz

actual force

critical frequency, in Hz

measured force

natural frequency, in Hz

applied force

shear modulus of the core
imaginary part of the variable x
complex operator

wavenumber in air

mass of impedance head and the attachment elements
mass of a panel

shear rigidity of a panel

number of modes per Hz

perimeter of a plate

radiation resistance

real part of x

thickness of the core

thickness of the face sheet
reverberation time

velocity of the structure

mean square value of the velocity
driving point admittance

actual driving point admittance
admittance of the impedance head and attachment elements
measured driving point admittance
half-power bandwidth
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N4 dissipation loss factor

Nraa radiation loss factor

A wavelength in air

Ae wavelength at critical frequency

Gy cross-spectral density between the random processes x and y
T, dissipated power

T input power

w circular frequency, in rad/s

, critical frequency, in rad/s

o mass per unit area

Pu density of air
Ox average over the domain x
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